The European Cosmetics regulation prevents the use of animal tests for evaluating cosmetics. To address the need for properly evaluating cosmetic ingredients, some "alternative" methods have been validated (skin irritation for example) and others are being developed. Most of the non animal assays are used not as stand alone but in integrated testing strategies.

In vitro micronucleus assay using human engineered skin and target cells grown beneath the tissues was developed. The purpose was to bring some information on exposure in vitro genotoxicity assays for dermally applied compounds. Previous results have shown that this method is reproducible and could be transferred to other laboratories. The system has now evolved to combine both the comet assay and the micronucleus assay.

The approach is based on performing the comet assay in cells detached from the tissues, while the micronucleus assay was performed using the cells cultured beneath the reconstructed tissues. Four different time schedules were considered for this project: a 4 h treatment and a 27 h treatment period could be transferred to other laboratories. The system has now evolved to combine both the comet assay and the micronucleus assay.

A set of 13 chemicals were tested with this approach. The results obtained show that the best prediction model was the long treatment period (27 h) cultured beneath the reconstructed tissues. Four different time schedules were considered for this project: a 4 h treatment and a 27 h treatment period with or with an extra 27 h recovery period.

Most of the "irrelevant positives" yielded negative in vitro results without recovery for both the comet assay and the micronucleus assay.

The European Cosmetics regulation prevents the use of animal tests for evaluating cosmetics. To address the need for properly evaluating cosmetic ingredients, some "alternative" methods have been validated (skin irritation for example) and others are being developed. Most of the non animal assays are used not as stand alone but in integrated testing strategies.

In vitro micronucleus assay using human engineered skin and target cells grown beneath the tissues was developed. The purpose was to bring some information on exposure in vitro genotoxicity assays for dermally applied compounds. Previous results have shown that this method is reproducible and could be transferred to other laboratories. The system has now evolved to combine both the comet assay and the micronucleus assay.

The approach is based on performing the comet assay in cells detached from the tissues, while the micronucleus assay was performed using the cells cultured beneath the reconstructed tissues. Four different time schedules were considered for this project: a 4 h treatment and a 27 h treatment period could be transferred to other laboratories. The system has now evolved to combine both the comet assay and the micronucleus assay.

A set of 13 chemicals were tested with this approach. The results obtained show that the best prediction model was the long treatment period (27 h) cultured beneath the reconstructed tissues. Four different time schedules were considered for this project: a 4 h treatment and a 27 h treatment period with or with an extra 27 h recovery period.

Most of the "irrelevant positives" yielded negative in vitro results without recovery for both the comet assay and the micronucleus assay.